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FUREWORD

This report is the {irst in a series documenting work completed under
Technical Development Plun ZPN07 (Education and Training Development), Work
Unit ZPNO7.P32 (Advanced Jomputer-Based Svstem for Instructional Dialogues),
This work unit will test and evaluate t-chniques for computer generated in-
struction. This tvpe of instruction can be distinguished from more conven-
tional approaches by the automation of instructional interaction and choice
of strategv. Tnis approach promises to reduce the costs of instructional
materials preparation and to increase the adaptability and individualization
of the instruction delivered. One aspect of this approach is the represen-
tation, by conmputer, of learner capabilities and needs. This report identifies
and reviews relevant leamrmer representation techniques that are reasorahle
candidates for trvout in Navy training environments.

The author acknowledges the continued support and encouragement of Dr.
J. U, Ford, Jr., Program Director for the Development of Training Technology.

7. J. CLARKIY
Corpanding Nffic-r
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Prchblem

The central problem in computer-assisted inatruction is ths trgnslaticn
of instructiocunsl practice, which is feirly vegue, into ~omputer programs,
wvhich ave quite precise. If effective procsdures are isomorphic with
craputer programe, this problem is one of tranalating inmstructional prace
. . tice inty effective procedures. Models of the learner nay be esgential
a ] in translating instructior. into effactiva procedures,

< Purposs and Approsach

‘;{ This raport reviews the explicft ude of models of the lesrner based on
B quantitative models of asmory, regression models of pezformsice, zutomaton
3 modeln of performance, and artificial inteiligence.

Findings

Models of Memory. Four quantitative models of memory have baen invasti-
LS : gatad for their utility in modeling lesrners in computer—assisted in-
struction: the incremental model, the cne-element model, th» randos~
trial increments model, and models based on General Forget+ing Theory.
, Instructional strategies based on the incremental model ave te.w2d
" respcuse insensitive because they concern the mumber rather thar the out-
e comes of presentations, Strategies based on the one-element mixizl, the
\: random-tzial increments model, and a General Forgetfing Theory /re
terwed vespouge sensitive becsuse they take into account the o .ccoomes
of presentations, General Forgetting Theory meete a nesd for s tiwe-
dependent forgetting process in modeiing learners'® knowledge of iteus.
T However, only locsally optimal inst:ructional strategies have baen deriwed
from Genersl Forgetting Theory. Global optirnization strat gies that
3 maximize gaiv over the entire instructionsl treatment tave been dezived
NS from the incremencal, one-element, and rondom-trial incres snte modais.

;o Regression Models. Despite considersble use of regression \odels to
e describe student progrese in computer—assisted instructicn, only two
B . examples of these models used to dyasmicslly predict and prescribe
B instruction for individual students were found, Predictive control
based on regression models of performance using such I!ndependent vari-
. ables as percent correct, response latency, and measures of state gad
trait anxiety has been used successfully to teach concepte aszccisted
v R with heart disesse. A theory of studeat progress derived from a sto-
{ chagtic differentizl equation may be applicable to a variety of currie-
uluzs end has provided very precise predictive control in experimimts
on computer-assisted instruction in arithmetic computation, Although
o regrezsicn models are well understood snd eaay to apply and modify,
R < they are sufficientiy powerful to aatisfy many wore applicaticns then
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hmve yer besn attempted. Through the usc of regression models, cox-
puter-aasisted instruction, which can dynawm’celly adjust vo within-
ceurse performance as well ss entering course meszsures, may realize
the intuitive promise of aptitude-trestment interezction.

Automaton Moduis. What computers do and what effective precedures are

uxy ba 808t ezdily described in terms of automsta theory, and it is rea-
sonable to turn to automsts thaory for models of the lssrmer that xsy

be easily represented by computer and used in computer-assisted icstruc-
tion, The rower of autometon zodels can be egeen in contrast with models
based on rcgreasion., However, regression models sre applied to grouned
dzta. Ro matter how adesguate they are for many applications or how
accurately they predict performancs, they do nct postulate the specific
#igorithaic procemges that students use in solwing prodblems. On the other
hand, snalysfs of these jlgorithms is a natural, integral aspect of su-
tomaton acdels. Use of these models is just leginping, but tuey have
already demonstrated their utility in describing the algorithmic process2s
used by students in solving arithmetic problems.

Models as Artificial Intelligence. Several ccaputer-assisted instructiss

projects have dbeen based on models of such formally structured pubiect
matier as mathematical logis, electronic troublevhocting, and computer
programming. Additional efforts are being made to extend this approach

to less formal subject matter such as Soutlh Americaen geography and history
of the Amarican Civil War., A1l these efforts attempt {0 devise adequate
models of the learner by starting with sn adequate model of some subject
matter snd "shading it in" as the learner masters given aupects of it.
&nother approach is to model human belief systems directly. This latter
approach has not been applied to computer~assisted instruction, tvi fairly
adcgquyte models of belief systems heve been devised for severel levels

of paranvia and for a "Cold Warrioz." Given all that must he represented
8¢ discraere facts and all the interrelations between these facts, adequate
representation 9f a human belief system may be unattainabie, However,

a balief aystem for an iastructional subject may be simpler and more
ameniable to computexr represintation.

Conclusiog

Implicic 4 ihe review is the assumption that explicit representations

of the learner should be applied in computer-assisted instructicen,
Instruction uces not merely deposit information on blank slates, Students
couprise complex, dynamic syatems that are altered by instruction, The
mere precisaly these student/systems are explicated, the detter imstruction
can te devised, modified, evsluated, and individuslized. Moreover, the
sppreaches to instruction discussed by the review use to advantsge the
power, speed, and accuracy of computers, and, in doing so, illustrate
unique snd valuable capabiiities of computers spplied te instruction.

viid
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INTRODUCTION

Problem

The central problem in computer-assisted instruction (CAi) is the trans-
lation of ipstructional practice, which is fairly vague, to computer programs,
which are quite precise. If effective procedures are isomorphic with computer
programs, this problem is one of translating instructional practice into
effective procedures. Turing (1936) arcued that any procedure programmed
for a computer is computable and effective, and he did not, current apocrypha
to the contrarvy, argue the converse of this statement. However, in agreement
with Minsky (1967) and others, this report assumes that any procedure that
is effective can be programmed for a computer,

Models of the learnrv may be essential in translating instruction to
effect:ve procedures, In a sense, all CAI includes these models either im-
plicitly or explicitly. In a linear sequence of curriculum items, a student
is modeled by that sequence and by his rosition in it., In a nor-linear,
branching sequence, a student is modeled by the bra:iching structure and, again,
bv his position in it. This suggests that content analysis ot curriculum

and models of the learner are dependent and inextricable, but this suggestion
will not be argued bere,

Purpose and Approach

This report reviews the explicit use of models of the learner based
on guantitative nodels of memorv, regression models of performance, autom-
aton models of performance, and artificial intelligence.
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RESULTS AND DISCUSSION

It is obviously beyond the scope of this paper to present i comprehensive
analvsis of the use of models in psychology. It should be sufficient to
say that the use of models has been a.. integral aspect of psvchoulogy for
a long time, The use of quantitative, or "mathematical,” mo:rls, which lead
directly to effective rrocedures, has occurred more recently. uveginning
with the search for a universal, analvtic learning function by Robertson,
Thurstone, Woodrew, and othere, it is possible to trace a gradually increasing
emphasis on systematic specification of the elementary units underlying learn-
ing. Hull's Principles of Behavior (1943) is a landmark in this regard.
Hull's postulates, which were designed to encompass the major aspects of
learning, initiaced considerable empirical research. However, it is not
possible toc make =more than a few quantitative predictions of behavior from
these postulates, Be that as it may, the work of Hull, Lewin, Tolman, and
others emphasized the importance of quantitative theory in psychology and
set the stage for the more recent work of Atkinson, Estes, Luce, Suppes,
and many others.

Considering the current status of quantitative models, there appears to
be a trade-off between the precision and the breadth and/cr complexity of
the phenomena thev account for, This report discusses models of the leamnier
in order of increasing complexity, moving rom quantitative models applied
in simple learning situations to more qualitative models applied in more
complex situations.

Models of lfemory

Although earlier work can be cited (e.g., Karush and Dear, 1966€; Matheson,
1964), a 1966 paper bv Groen and Atkinson appears to have been seminal in
the application of models of memory to instruction. Groen and Atkinson tied
the application of quantitative learning models to the optimization of imsiruc~
tion. The prototypal instructional situation addressed by this and similar
papers was first presented by Suppes' (1964) analysis of learning a list of
items. Roughlv, a set of M items is to be learmmed in a fixed number, S,
of sessions. (n each session a subset of the M items is presented for study.
The optimization problen is to maximize performance on a posttest of all M
items by appropriate selection--in size and/or content--of the subsets subject
to the constraints presented by } and S. This optimization problem is general-
ly solved by the partlcular model of memory chosen to represent the learner,
and discussions of optimized instructic:~ would be academic were it rot for
the use of computers in instruction. These discussions typically start with
the single-operator, or incremental, model (Bush and Sternberg, 1959) aud
the all-or-none, or one-element model (Estes, 1960). These two models have
become prototypal and serve as standard straw-men in the development of learn-
ing models.

Preceding page blank  °
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The incremental model assumes that the probability of an error on item
1 on the n+l presentation (q, n+1) is
b ]

qi,n+1 = aq, where 0 < a < 1,

In other words, the probability of an error on an item is reduced by a constant
amount every time the item is presented, no matter what happens on the presen-
tatiorn. The magnitud2 of the constant amount is estimated by a parameter,

a, that is uniquely determined for each learmer.

The onc-element model assumes that, for each student, each item to be
presented is in one of two states--learmed or unlearmed. When an unlearned
item is presented, it moves into the learned state with probability c. Spe~
cifically, the probability of a. error on item i on the n+l presentation

{ .
‘qi,n+1) is

q with prohability l-c
i,n

q
i,n+l 0 with probability r,

In other words, the probability of an error on an item remains constant nc

natter how nany times it {s presented until a correct response to the item

is made, at which time the probability of an error on the item immediately

drops to zero and remains there forever. The probability of a correct response

is estimated by a parameter, c, that is uniquely determined for each leamer.

Given their simplicity, it is nct surprising that these models have become
straw-men or even whipping bovs. What is surprising is the large amount of
experimental data they account for. There are many experimental sjtuations
in which these models adequately describe the phenomena observed.

3oth the incrementai and the one-element models predict the same learning
curve for a given set of items. As Calfee (1970) pointed out, they differ
in their assumptions about underlying processes, and these differences hinge
cn the response-dependent character of the one-element model. The conditional
probability of an error on presentat?.n o+l of item i, given an error on
trial n, is

n
POy ael9g,0) = 29 )
for the incremental model and
P(qi,n+liqi,n) = (l-c)qi,l
for the one—-element model. Notably, the latter probability is not a function
of trial number; learning either occurs or does not occur solely as a function

of the parameter ¢ in the one-eiement model. For this reason Groen and Atkinson
termed instructional stratepies based on the incremental mcdel as response
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insensitive because they concern the number rather than the ovtcomes of the
presentations, and strategies based on the one-~elament mode: as response
sensitive because they consider outcomes of item presentations.

Yy
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Dear, Silberman, Estavan, and Atkinson (1967) reported the firs: appli-
cation of a quantitative memory model to CAI. They used a presencation strategy
based on the one-element model to teach paired-associztes under computer
control., Aithough their strategy was theoretically ontimal, it required massed
presentations ard produced poor results relative to thoze obtained from a
3 standard presentaton schedule (hat required distribured presentations. The
point to be emphasized here is that a theoreticaliy optimal procedure may
not be the best instructional procedure availsble. An optimal picco.udunre
attempts to maximize some cutcomes subject to some constraints. Trul
and constraints may comprise a model of an instructional situatinn ani,
the extent that this model is accurate, it will produce supericr irst.uccionsal
outcomesz. The Dear et al. study tested both the adequacy of an optimal
prccedure and its underlying instructional model; thus, it provided imp.rtant
feedback both to thiose concerned with instructional procedures and with ‘heories
of human learning. Greenv (1964) and Groen and Atkinson (1%66) had suggzested
that the one-element model may “ail badly in accounting for learning under
massed presentation, and it was reasonable to avoid massed presentation in
subsequent tests of the Dear et al. strategy.

»
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Lorton (1973) compared a modified form of the Dear et al, strategy with
a standard strategy based on the incremental model in presenting CAI in spel-
ling to disadvantaged 4th through 6th grade students. Lorton's modification
disallowed the presentation of any item more than once in any session. His
results indicated a lesser error rate during training for the strategy based
on the incremental model, but significantly better posttest performance for
the strategy based on the one-element model, Using the modified Dear et al.
strategyv, then, Lorton demonstrated the anticipated superiority for a response
sensitive, optimal strategy in a posttreatment measure of achievenent.

Laubschi (1973) took a step further and applied a presentation strategy
based on the random-trial {ncrements model (Norman, 1964) to teach Swahili
vocabularv to native speakers of English’, The random-trial increments mcdel
includes the features of both the incremental and one-element models by as-
suming that the probability of an error on item i1 on the n+l pregentation

(qi,n+1) 1s

9 n with probability 1-c
?
9 ,n+l1

aqy with probability c.
o,

It shoulc be 1oted that, if ¢ < 1, a strategy based on the random trial
increments model wili be response sensitive in that it will have to attend

laltlough Lorten's study was documented after Laubsach's, it was designed and
run earlier.
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; to the outcomes of prior presentations., Laubsch's study was motivated by

3 the consideration that the assumptions of subject and item homogeneity in
strategies based on the one-element model are untenable in most practical
situations, The review by Atkinson and Paulson (1972) emphasized that an
essential confribution of Laubsch's irvestigation was the development of

a strategy based on tne raadom-trial increments model to allow the parameters
of the modei to vary with different students and differeat items. Laubsch
concluded that altaough significant improvements in learning car be achieved
by applying optimal presentation strategies based on models of memory, these
models are inadequate in an important aspect: they do not include a time-
dependent forgetting process.

Rialdiald
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] This inadequacy was directly addressed in a paper by Paulson (1273), who

: discussed the implications of the General Forgetting Theory formulated by

: Rumelbart (e.g., 1967) for preventation straregies based ocn different vari-

1 eties of the one-element model. The General Forgetting Theory can be briefly
3 described as assuming that a subject at any given time is in one of three

3 possible states of learning with respect to amy item: (1) an unlearned state
(U), (2) a sbort-term retention state (S), or (3) a long-term retention state

(L). As formulated by Paulson, when an item is presented, transitions between
states occur according to the following stochastic matrix:

Probability of a corre~t

State on trial t+l response given the state
L S U
L |1 0 6—_- § 1 ’
Stateon S |c l-c 0 1
trial t U la b 1-a-b g
.. — S

3 In other words, if an item is in the learned state, it stays there forever.

If an item is in the short-term state and is preseated, it may either change

to the iearned state or remain in the short-term state. If ar item is in

the unlearned state, it may change either to the leammed or short-temm state

or it may remain in the unlearned state. The probability of a correct response .
to an item in the leamed or short-term state is one, while the probability

of a correct answer to an item in the uniearned state is equal to some guessing
parameter,

Under the General Fcrgetting Theory, it is also necessary to consider
items that are not presented on 2 trial. Transitions between states for
these items occur according to the following matrix:




State on trial t+l

L S y

vt o ol

State on S |oO 1-f f
trial t U {0 0 E_

In other words, only items in the short-term state may change state during

a trial in which they are not presented; they may either stay in the short-tevm
state or drop back to the unlearned state, If we are willing to think of

time measured by trials or presentations rather than minutes, these transitions
answer Laubsch's call for a time-dependent forgetting process,

Despite the inclusion of a forgetting process, presentation strategies
based on the family of m>dels represented by the General Forgetting Thecry
incerporate a serious linitation, With respect to this limitation, two types
of optimal strategies can be distinguished: (1) local strategies that maximize
immediate gain, and (2) global strategies that maximize gain over the course
of the instructional treatment. Paulson demonstrated that the difficulty
in applying the General Forgetting Theory to the derivation of globaily
optimal strategies is that these strategies require looking more than one
trial chead in all cases of interest, The tractability of the one-element
model in deriving s globally optimal strategy is a fortunate exception to
a general rule of intractability. Paulson discussed several localiy optimal
strategies based on the General Forgetting Theory that look only one trial
ahead. These strategies are mathematically manageable and intuitively rea-
sonable, but they were all shown not to be globally optimal.

It is important to note that the applica:ion of quantitative models of
memory is not a straightforward procesc of selecting the most adequata model
available, grinding thrcugh the necessary mathematics to derive an optimal
presentation strategy, and programning the strategy on the local CAI system.
The verification task for selecting the most adequate available model is
undecidable. The mathematics for demonstrating that a selected ztrategy is
optimal may be prohibitively difficult. The selected strategy may not be
implementable on a computer in general or on the particular operating system
available. A global, quantitative theory for deciding these problems aay
someday be developed, but, in the interim, selection cf optimal presentation
strategies for CAI must necessarily depend on the biases of concerned individ-
uals and on the results cf empirical investigations.




The limitations of the learning situations to which these quantitative
models can be applied were mentioned earlier. Considering these limitationms,
the number of remairing, unresolved issues is especially rnotable, It can
hardly be overemphasized that we are just beginning to apply these models
to instruction.

Regression Models of Performance

There has been considerable use of regression models to describe the
progress of students in CAI (e.g., Searle, Lorton, and Suppes, 1973; Suppes,
Fletcher, Zanotti, Lorton, and Searle, 1973). Such applications are analogous
to the use of productiou functions in economic theory and can be used for
both the optimization and the evaluation of instructiou (Fletcher and Yamison,
1973). The use of regression models to predict and prescribe instruction
dynar ‘zally for individual students has been less cowmon. 7Two examples of
this type of application are represented by the work of Rivers (1972) and
Suppes, Fletcher, and Zanotti {1975a, 1975b).

Rivers documented an application of multiple linear regression to an
elementary course in heart disease. He identified nine concepts taught in
the course and, based on existing student performance, devised linear regres-
sion models for posttest performance on che concepts, given cummulative course
performance up to and including the presentation of each concept. After
adjustments, regression models that predicted posttest performance were devised
for seven points in the program, i.e., after presentation of each of seven
concepts. A student could be given remedial work after finishing a concept
and before proceeding in the course if his posttest performance was predicted
to be sufficiently low by the relevant regression model. These models in-
cluded such independent variables as percentages of correct responses, raspoase
latency, and performance on state and trait anxiety scales.

Rivers compared the posttest performance of four treatment groups.
The first group received remedial material as indicated by the regression
models; the second received all prepared remedial material; the third received
no remedifal material: and the fourth received remediation at the option of
individual students. There were no significant differences in posttest per-
formance between the regrescion model group and the all-remediation group,
but both these groups performed significantly better on the posttest than
the no-remediation group and the student-choice group. Notably, the regression
model group averaged less time in the course than the all-remediation group,
but this Jifference was not significant.

Suppes, Fletcher, and Zanotti used regression models of achievement derived

for individual students to determine unique goals for individual students

and the amount of instructional intervention required by individual students

to reach their goals. Suppes et al. (1975a) documented a theory of student
progress from which was derived a stochastic differeantial equation that may

be characteristic of many curriculums. At time zero, this equation takes

the following simple form:

y(T) =a+b T
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where v(T) represents the position of the student in the course (Suppes et al.
take this postion to be grade placement measured by a standard, paper-and-
pencil achievement test); T represents the amount of time measured by minutes
or sessions a student may spend in the course; and a, b, and c are parameters
of the model uniquely estimated for each student.

For achievement in arithmetic computation, Suppes et al, (1975a) reported
a mean standard error of estimate of .06 in vears of grade placement, with
a range of .02 - .2,, when ¢ was set to a constant value for all students
and only 2 and b were estimated for individuals. Notably, if c is constant,
~he equation ls intrinsically linear in the sense of Draper and Smith (1966).
I1f ¢ is allowed to vary, the equation is no longer intrinsically linear, but
it can be effectively estimated by the %olub-Pereyra algorithm (1972).

Obviously, there is room for more work in the application ot regression
models to achieve predictive-control in CAI. Although these models are well
understood and easy to apply and modify, they are sufficiently powerful to
satisfy many more applications than have yet been attempted. Although Rivers
used both anxiety measures and within course measures, the number of person-~
ality and aptitude measures that might be entered into regression models of
performance is large and worthy of investigation. Cronbach and Snow (1969)
suggested that these entering measures may be insufficient for prescribirg
instructional intervention by themselves, However, in the context of CAI,
which can dynamically adjust to within-course performance as well as entering
course measures, the intuitive promise of aptitude-treatment interaction may
be recalized. The quantitative theory of curriculum progress presented by
Suppes et al., vas derived from qualitative principles. These principles and
the theorv presented are subject to empirical scrutiny. The strength of this
theory is its generality; it can be directly applied to a wide variety of
CAI in a straigatforward manner with a minimum of empirical tinkering.

Automaton Models of Performance

What computers do and what effective procedures are may be most easily
described in terms of automata theory (cf. Minsky, 1967; Moore, 1964)., An
automaton may be described as a device with a finite number of internal states
which change in response ro letters from a finite glphabet, These letters
are presented one at a time on a tape which is "read" sequentially by the
device. It seems reasonable to turn to automata theory for models of the
learner that may te easily reprasented by computer and that may be used in
CAI. Suppes (e.g., 1969) and Offir {1973) have discussed such applications
in detzil. An impetus for these applications is Suppes' (1969) demcnstration
of an asymptotic isomorphism between a given recognition automaton (Rabin,
1964) and a derivable stimulus—-response model. In making this demonstration,
Suppes identified intermal states of automata with tlie responses of organisms.
Different states of conditioning of the organisms were represented by dif-
ferent automata rather than by different internal states of automata. Sets
of stimuli that night be presented to organisms were represented naturaily
and obviously by the letters of the finite alphabet recognized by the auto-
mata.
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For behavioral data, it is intuitively desirable to introduce some sto-
chastic notions into automaton models of organisms., Suppes (1969) did this
by turning from deterministic automata to probabilistic automata in devising
a model for column addition of integers in which the integers and their sums
all have the same numbers of digits, The power of this approach can be geen
in contrast with models based on regression., Regression models are applied
to grouped data. Thus, no matter how adequate they are for many applications
or how accurately they predict performance, they do not postulate the specific
algorithmic processes that students use in solving problems, On the other
hand, analysis of these algorithms is a natural, integral aspect of automaton
models.

Offir (1973) presented another amalysis of CAI performance data in ele-
mentary addition based on an application of stochastic sequential machines
(Paz, 1971). The models developed by Offir are more elegant than the earlier
models devised by Suppes in that the aigorithmic processes are described
more parsimoniously and are more powerful in that between--problem depend-
encies can be included. In applying these models to CAI performance data
from two-integer vertical addition problems, Offir was also able to avoid
two assumptions made by Suppes. These assumptions were that (1) if a carry
error is executed, the probability of a correct response in that column is
negligible, and (2) responses in different columns are independent.

Suppes and Flannery (in preparation, but see Suppes, 1974 or Fletcher
and Suppes, 1975) used register machine models to compare the performances
of deaf and hearing students on a variety of elementary arithmetic problems
presented in CAI. The results of this study derived considerable value from
the precision with which the arithmetic processes used by the leamers could
be modeled. On one hand, the study demonstrated with some certaiaty that
objective features of the curriculum (for example, whether a vertical addition
problem has a carry or not) were processed in much the same way by both deaf
and hearing children. On the other hand, the study provided knowledge of
the arithmetic processes used by the students that could have been used to
individualize their instruction and, in so doing, would rerve as precise models
of the learners. In any case, CAI represents a serious hope for realizing
the potential inherent in the dynamic, interactive applicaticn of these au~
tomaton models to inmstruction,

Models as Artificial Intelligence

A common complaint about quantitative models is that tney are not "cog-
nitive." This complaint may stem from the lack of complexity in the behavior
the models account for, and/or from the lack of intuitive bases for the
parameters of the models. In either case, it may be reasonable to turn to
artificial intelligence for more satisfactory models of the leammer.

Although thev have not been addressed directly to CAI, the claims for

artificial intelligence hold considerable promise. Newell and Simon {1972)
have discussed methods such as generate and test, heuristic search, and matching
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that may be prototypal in gener.l problem solving. Newell, Shaw, and Simon
(e.g., 1960) worked for several years on a general problem—solving computer

program., Final’ -1son (e.g., 1968; 1973) and Colby (e.g., 1967; 1973)
heve developed ¢ - programs to model human belief systems.
In discussing . hilosophical problems of artificial intelligence,

McCarthy and Hayes (196% lIistinguished two aspects of intelligence-—an epis-
temological part and a heuristic part. The epistemological part represents,
or models, the world so that prol.lem snlutions follow from what is represented.
The nheuristic part actually solves the problem and decides courses of action.
Most recent work in zrtificial intelligence has been concerned with the epis-
temological part of intelligence. Once '"reality" is adequately represented,
appropriat? problems should be sufficiently well defined to facilitate deri~
vation of effective preceduree, or heuristics, for solving them. McCarthy
and Hayes proceeded to distinguish metaphysically adequate representations
from epistemologically adequate representations. A representation is meta-—
physically adequate if it does not contradict those aspects of reality that
are of intevest. It is epistemologically adequute 1f it does not contradict
aspects of realitv that are known. What computers cannot do may hinge om
this distinction. For instance, Dreyfus' (1972) discussion of problems in
artificial intelligence seems to hinge directly on the distinction of meta-
physically adequate representations from epistemologically adequate repre-
sentations. Dreyfus' point seems to be that there is no effective procedure
for distinguishing what we need to know in some context from what we know.
This point gains importance in considering artificial intelligence approaches
to CAI,

Goldberg (1973) attempted to devise a metaphysically adequate represen-
tation by basing her approach to CAI on formally structured subject matter.
Goldberg developed a proof-interpreter for CAI in mathematical logic. This
interpreter imitated the adaptive behavior of a human tutor by supplying
relevant hints to students and by encouraging students to use diverse solution
paths. The interpreter was uscd in a CAI system that permitted a student
to specify or extend the axiomatic theory he was studying. It should be
emphasized that the hints and diverse solutions indicated by the program
were devised dynamically and interpretively; they were not pre-specified
or pre-stored. Goldberg's mcdel of the learner, then, was basically a model
of the subject matter thac represented the learner by keeping track of the
subject matter he had mastered. In another sense, however, Goldberg's proof-
interpreter in its entirety modeled an ideal student-graduate of the course
and represented the behavior that was the goal of the instruction. Notably,
the proof-interpreter could not onlv complete the proofs required of students,
but it could also take a student's uwn proof steps into account as it searched
for a solution. In this sense, the proof-interpreter did not represent a
single idealized student-graduate but, rather, the ideal to which a particular
student might aspire.

11
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The limitations of Goldberg's system appear to have been along the lines
of epistemological and metaphysical adequacy discussed earlier.

Te what extent, then does the computer-based tutor
fail to perform as well as a human teacher might? The auswer
to this question is based on the ability of the human teacher
to leave th~ present domain of discourse and to borrow freely
from general sources of knowiedge. The human teacher can
let the student ask general questions, and can devise illus-
trations from other subiect areas in order to help the student
understand the answer to his query. The human teacher is
not 3s restricted, as is the present computer-tutor, in
s formulating the tutorial dialogue, or in allowing inter-
2 ruptions from the student which could be useful in inferring

problems the student may be experiencing (p. 253).

3 The strengths of the system are powerful and obvious. It never errs, misleads,
3 or ignores progress made by the student; it is infinitely patieant; and it
serves many students simultaneously.

Severul other CAI projects have been based on metaphysically adequate
models of formally structured subject mattrr. Brown, Burton, and Bell (1974)
devised a computer representation of electronic equipment that both supported
CAI and revealed operating characteristics of the equipment that had not been
anticipated by the manufacturer. Barr, Beard, and Atkinson (1975) are at-
tempting to develop CAI techniques to judge the semantic correctness of
student-written computer programs based on a representation of the BASIC
computer languase. Finally, work reported by Collins, Warnock, and Passafiume
(1974) supports mixed-initiative CAI based on a representation of South
Anerican geography. This type of CAI is called mixed-initiative because
inquiries can be initiated by either the student or the computer. It is
reasonatle to expect increasing use of subject matter models in CAI. Clearly
one way to devise adequate models of the leamer is to start with an adequate
model of the subject matter and "shade it in" as an individual masters given
aspects of 1it, A useful review nf some of this work was presented by Self
(1974).

Another approach is to model human belief structures directly. Colby,

at Stanford, and Abelson, at Yale, have been investigating computer simulations

of human belief systems for several years. Colby's originai intention was

to simulate neurctic belief systems and the change they might undergo during

psychotherapy {(cf. Colby, 19567). This resembles what we would like to see

in CAI. A belief gystem in both Colby's and Abelson's formulations is a

set of interdependent concepts which could reflect the status of a student

and the changes in his belief system or concept structure that might result

from instructional intervention. Such a system could simulate the effects

of instruction on a student so that the best instructional alternatives might

be chosen for given objectives. As Colby has pointed out (1973), the dif-

ficulties of these tasks have limited him to the first, epistemological pait--
o modeling the belief systems. Evidently, both Colby and Abeison have suspended

12
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work on the heuristic part concerned with changes in the system., Applicatiuvns
of these models to CAl as, perhaps, criterlon-referenced representations of
the learner are <till desirable and, based on the evidernce, possible., Colby's
success in modeling a paranoid belief system is attesred by a verification
experiment reported by Colby, Hilf, Weber, and Kraemer (1972). 1In a reat
based on Turing's (1950) suggestions, therapy protocols from computer models
of strong and weak nararoia and from human patients exhibiting paranoia were
compared by practicing psychiatrists. None of the psychiatrists were aware
that a computer model of paranoia was involved. The psychiatrists rated the
strong version of the computer model significantly higher in paranoia than

the human patients, and the weak version of the computer model significantly
lower ’n paranoia than the human patients.

Abelscn (cf. 1973) has taken a more theoretical approach to the problem,
basing his teclhiniques on work ir computer understanding of natural language
concepts by Shank (e.g., 1972). This work holds great promise, both with
respect to the espistemological and metaphysical adequacy of the represen-
tations it may produce and with respect to the heuristics for change that
should result. Abelson's model of a human belief system, the Cold Warrior,
has indicsted a problem that is easy to understand and difficult to solve.

As he has said, "there can be no veridical simulatfon of a be._ief system

on a small scale [1973, p. 338]." Given all that must be represented as
discrete facts and all the interrelations between these facts, a metaphys-
ically adequate representation of a Luman belief system turns out to be
enoruous. However, a metaphysically adequate belief system for an instruc-
tional subject may be much simpler and smaller than a paranoid or a Cold
Warrior belief system. As evidenced by the work of Goldberg and others (e.g.,
Kimball, 1973), the existing structure of instructional subject matter may
lead to metaphysically adequate computer representations that lend themselves
to relatively facile derivation of heuristics for the dynamics of instruction.

Overall, there appears to be useful progress on two fronts: (1) devising
models of subject matter that, in turn, can mcdel learners, and (2) modeling
belief systems. Additionally, there are a few attempts to directly model
human cogn{tion in learn-ng. Most of tuis activity stems from the early,
influential development of EPAM (Elementary Perceiver and Memorizer) by Simon
and Feigenbaum (e.g., 1964). EPAM is a computer program designea to act as
a human subject in rote learning experiments. Its success has been substantial,
and its behavior has been shown to be similar to that of human subjects in
a variety of activities (e.g., Gregg and Simon, 1967; MclLean and Gregp, 1967).
EPAM might be used successfully tec prescribe Instruction for learners based
on its "understanding” of their learning status, but an application of this

sort has not been attempted. Hopefully, efforts of this sort based on the
new models of human cognition are forthcoming.

13




Final Comment

It should be emphasized that attempts to devise adequate models of the
learmmer are necessarily myopic. A truly adaptive instructional system must
not only teach but learn. Such a system must embody models, procedures f.r
hypothesis testing, and controls. The models provide formal reprgsemcations
of the subject matter, the learmer, and their interaction. The proceduies
for hypotheses testing allow the system to draw conclusions concerning the
behavicral characteristics of the learner. Finally, the controls emnable
the system to effect desired behavioral changes in the learmmer to accord
with specified instructional objectives. A thorcugh discussion of these
issues was recently prepared by Offir (1975).

14
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3 CONCLUST

Implicit in this review is the assumption that explicit representations
of the learmer should be applied in CAI.  Instruction does not merely deposit
information on blank slates. Students comprise complex, dynamic systems
; that are alctered by instructior, and we nerd models for translating these
1 svstems to the effective procedures necessary for computer representations.
“Presumably, the better we explicate these student/systems, the better we

can devise, modifv, evaluate, and individualize irstruction. loreover the
approaches to instruction discussed by tnis paper use to advantage the power,
speed, and accuracy of computers, and, in doing so, illustrate a uaique and
valuable capability of computers applied to instruction.

Y

Qulravaid)

No general recommendations can be rade concerning the approaches reviewed
by this report. 'bodels of memory support optimization of instruction, regres-
sion models promise wide applicability and the inclusion of supplementary
information such as those of aptitude and gsa2rsonality characteristics_  automaton
models support direct investigation of the cognitive processes underlying pro-
blem solving bv learners, and artificial intelligence techniques may provide
the wost complete representation of what the learner knows and does not know.
Wnich of these approaches should be pursued will depend on the intevests, goals,
and capabilities of those investigating them.
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